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Abstract

The distributive circuit element model consists of a chain of T
elements. The elemental model is made up of series and shunt paths. The
sheet resistance of the diffused layer constitutes the series path. The
shunt paths are three fold, consisting of the diode together with a
series resistance, a conductance and a light generated current source.
For a givencell, the parameters used in the model can be obtained by
measuring the potential profiles for reverse -biased, forward-biased and
short-circuited illuminated conditions and feeding the data obtained from
the measurements in the solution of the differential equations for the

model. The model has been successfully employed to compute optimum gridding
for the cell.
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INTRODUCTION

Resistive components in solar cells cause power dissipation. The
loss due to the sheet resistance of the diffused layer can be minimized
by a grid structure contact. The purpose of this work is the derivation
of a model for a solar cell suitable for the accurate design of an opti-

mal grid.

Wolf ! studied the grid structure of a solar cell using a

lumped parameter model. The optimized grid configuration based on the
model did not conform too well with the experimental results. Lamorte”
assumed a grid configuration and showed with the help of a distributed
parameter model that the grid configuration was satisfactory.

In this work a new distributed parameters model is derived for an
ungridded cell. [t cunsists of a distributed resistance in the series
path and shunted diodes with series resistance and current sources per
differential cell length in the shunt paths. The analysis of cells based
on this model leads to a system of three coupled, non-linear, first order
differential equations. A solution was reached by computer methods. Data
for the solution of the equations was obtained from measurements of the
potential profiles along the length of the cell under reverse-biased,
forward-biased and illuminated short circuited conditions. An optimized
grid structure for the cell has been obtained by maximizing the power density.

SETTING UP OF THE MODEL

The model of the solar cell is set up under the following assumptions:

I

11)
111)

Iv)
V)
Vi)

VII)

VI11)

The cells are rectangular in shape, with the diffused layer
exposed to the radiation.

The resistance of the base layer is negligibly small,

The bottom of the base layer has a metallic contact over all

the area.

A rectangular contact strip is provided at one end of the diffused
layer.

The length of the exposed area of the cell W is much larger
than the width of the contact W_ .

The contact resistances of themétallic contacts are negligibly
small.

The cells are homogeneous or there are no potential variations
along the y-direction in Figure 1 for the cell under illuminated,
short-circuited conditions.

The cells are assumed to have a depth of one unit length along
the y-direction.

When exposed to radiation, the solar cell along its length may be considered
to be made up of an infinite number of basic units of the type shown in

Figure 2a.

The load resistance is connected across the unit at x = W.




In the basic unit, the diffused layer is represented by a distributed
constant resistance p per unit length. g is the shunt conductance per
unit length; r is the series resistance of the diode per unit length;

J is the light generated or radiation current density and is propor-
tional to the intensity of light if the spectral distribution of the
radiation is not varied. J is the same for all units. The diodes in
the various units are assumed to be identical and are characterized by
their reverse saturation current density J , which is determined by

the properties of the material. JD is the’current density through the
diode.

The equations describing this model are

TH e o1 ) (1
X
—iuﬁxx = - g V(x) - Iy(x) + Iy (2)
V(x) = VD(x) + JD(x) r (3)
According to the Schokley diode equation
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Rationalizing Equations 7, 1 and 2 by putting % = £
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Equations 8, 9 and 10 are a system of nonlinear, coupled first order dif-
ferential equations. There are three boundary conditions necessary for a
unique solution. 1In order to determine I(§), J (§) and V(E) from the
above equations it is necessary to know the parameters p, g, r, J and
of course, JR for a given illumination level. °

Determination of J_.

R_

The radiation current density is not directly accessible to measurements
but can be estimated from the open circuit voltage of the cell. Under
illuminated condition but no load or battery connected across the cell,

I(€) = 0. Hence in each unit of the model, J_ flows through the shunt
conductance g and the series connection of the resistance r and the
diode causing an open circuit voltage V c* The current flowing through
g 1is seen to be several orders of magni%ude smaller than J and can

be neglected. Hence JR = JD for open circuit., Therefore, making use of
Eq. 4
a(v__ -1 J)
oc R
JR = JO ] e - 1]
or
J
1 R
= 4 — - - =
5 n (JO + 1) (VOC T JR) 0 (11)

For a measured value of VOC’ J_ can be computed numerically from the
transcendental Eq. 11, provided R Jo and r are known.

Determination of ¢ and g .

The parameters g and o5 can be investigated by considering the un-
illuminated cell under reverse-biased condition. The model for this case
is given in Figure 2b. The cell along its length is equivalent to a lossy




transmission line and governmed by Eq. 1, 2 and 3 with JD(x) = JR = 0.
Hence

V&) | L1 (x)

dx (12)

: g xx = - g V(x) (13)

Eq. 12 and 13 may be rewritten as

2
idl(z-x—z = g V(x) (14)
X

2

d"I1(x)

zx =p g I(x)
dx

(15)

The solutions of Eq. 14 and 15 are

e
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A e VPBXE

V(x) +Be

g x

I(x) =c eVPE X 41 pe

A, B, C, and D are constants of integration. The physical configuration of
the cell suggests that I(x) 1is zero at x = 0.

Hence C = -D
o/ -Joe

and I(X) =D [e gp X -e '\/pg X ]
or I(x) = 2D sinh A x (16)
Similarly

V(x) = 2D +p/g cosh . pg x (17)
1f

v, = V(x = 0)

v, = (x = W)
and Ia = I(x =W)

are known, Eq. 16 and 17 yield



v
2 2 1 -1 a
p = Va - Ve (VI cosh v ) (18)
a e
1 Ia - Va
g = (EJ— cosh 7 ) (19)
Ve -v-© e
a e
and V(x) =V cosh Jog X (20)

V,I,V and W for a given cell can be obtained from measurements
under revErse-biased condition. Hence Eq. (18) and (19) determine the
unknown constants p and g of the model.

In order to check the validity of the model, the above values for
p and g were substituted in Eq. 20 of thepotential profile V(x) and
the result plotted. The computed and measured potential profiles for a
given cell in the reverse-biased case are shown in Figure 3 for three
different values of Va'

Determination of JG’ and r.

The parameters J and r can be investigated by considering an
unilluminated cell undér forward-biased condition. The model for the
cell for this case is shown in Figure 2c. This model is described by
the following set of Equations 21, 22, and 23 which are similar to

Eq. 8, 9 and 10 but with JR = 0

d—d-Igﬁ = - Wig V(x) + I (5)] (22)
L oW (23)
where £ = =

The set of E«¢. 21, 22, and 23 is a system of nonlinear, coupled, first
order differential equations. There are three boundary conditions necessary
for a unique solution. The boundary condition I = 0 stems from the
physical configuration and is discussed earlier. ®The remaining two boundary



conditions enter the problem as experimental constraints. These two
boundary conditions are not independent of each other since the differ-

ential equations are coupled with each other. A knowledge of Va = V(x=W)
or V= V(x=0) helps to determine J_, =J (xW) or J_ = JD(x=O)
respectively from the transcendental eﬂuation (11), e

replacing VOc by Ve or Va .

Taking Va’ J_ and I_ = 0 as the boundaries, the problem becomes a
L~ . 1 -
boundary value a problem whereas if Vv , Jp, and 1 = 0 are taken as

boundaries, the problem becomes an initial value proble%. The latter is
much more suitable for numerical calculations but has the disadvantage of
involving quantities which are only of minor interest, namely V and JD

in place of the directly applied quantities Va and J e

D"
a
The system of Eq. 21, 22 and 23 is not solvable analytically. A
closed form solution can be found only for r =g = 0. The equations with
finite values for r and g «can be solved on a digital computer with a
standard program for the solution of systems of first order differential

equations using Adams-Moulton's method with a Runge-Kutta starter.3
q g g

For a given cell, the measurement of a potential profile along the
length of the cell, V(E) is made for a given forward biased voltage Va

and a current I_ . Taking V from these measurements, the
corresponding JD and Ie =0 for boundary conditions of the differential
equations, e knowing p and g and assuming some values of r and

J , the quantities V(E), I(E) and JD(§) are obtained from the computer.

The assumed values of r and J_  are varjed in the solution of Equations 21,

22, 23 and 11 till the computed values of v, and I_ match with the
measured values., Figure 4 shows potential profiles, computed and measured
for a given cell for different values of applied forward potentials V .
The resulting values of r and J together with p and g computes
earlier are also tabulated in the ?igure. Figure 5 shows J_(x) and
I(x) which correspond to the computed curve 1 of Figure 4. As x
V(x) increases from Ve to V_. Since J depends upon V(x), JD(x)
increases as x increases., I(x) is zero at x = 0 and increases as x
increases in the negative direction.

OPTIMIZATION OF THE CELL GEOMETRY

It has been shown that the parameters of the model can be obtained by
measuring potential profiles in a given cell under reverse-biased, forward-
biased and illuminated short-circuted conditions. The model can be used
for the determination of optimal cell geometries. The feasible length of a
cell with one contact is limited mainly by the diffused layer resistance ;.
The length can be optimized by maximizing either the power per cell or the
power density, i.e. maximum power per unit cell length. The latter approach
is important for gridded cells. Before discussing these two possibilities,
the loss associated with a contact will be discussed.

increases,



LLosses at the Contact

So far in the analysis, the metal contact was assumed to be of negligible
width and to cause negligible loss. This assumption is valid only for large
cells. 1In small cells the losses at the contact become an important factor.
Referring to Fig. 1, V(x) under the metallic contact may be assumed to be
constant and equal to V_. It has been observed* that the metal to semi-
conductor contact resistance is very small and may be neglected. Since
light does not reach in the part of the cell covered by the metallic contact,
the light generated current in this part is zero and for normal solar cell
operation this region can be lumped into a forward biased diode. Thus,
the output current collected at the contact is decreased by the current
flowing through the diode under the contact. Since the contact width has
been added to the cell length, there will be a decrease in the current and
power density of the cell.

Optimal Length of an Ungridded Cell

The effect of the length of an ungridded cell on the performance of a
solar cell can be studied by computing J _(x) and I(x) for an illuminated
cell, short-circuited between the metallic contact and the bottom of the
base layer. Fig. (6) shows the variation of I(x) and J_(x) for such
a cell with V__ = 0.53V. Figure (6) shows that those parPs of the cell
lying at a distance greater than about 1 cm do not contribute significantly
to I(x). For those parts of the cell, a significant contribution goes
through JD .

Another point of view is illustrated in Fig. (7) where the output
current I is plotted vs the cell length for an illuminated cell for
various levels of illumination. It is seen that I increases almost
linearly up to a certain length, which depends uponathe level of illum-
ination. Then I levels off sharply to a constant value. For maximum
short-circuit current the length of the cell is about 1 cm.

Optimizing a Gridded Cell

For certain applications such as in limited available space, an out-
put quantity other than the maximum power is of major interest. The power
density or the output power per unit length is given by

P
- =2
Pa = "W FW
c

In Fig. (8) the maximum power density is plotted against the length W of the
active area of a cell for various values of W_ . As expected, the smaller

the value of W |, the larger the maximum power density. W is decided

by laboratory tgchniques. The optimal cell length W foll6us from Fig. (8)
and decides the separation between grid lines for maximum power density.




CONCLUSIONS

The model of the solar cell developed in the paper includes five
constants. These constants are computed from measurements and solutions of
the differential equations describing the measurements as follows:

(a) Measuring a set of Ve’ Va and Ia of the reverse-biased cell.
Computing p and g from these measurements.

(b) Measuring V , V and Ia of the forward-biased cell. Computing
r and JO %rom the measurements and differential equations.

(c) Measuring VOC of the illuminated cell. Computing JR .

The following conclusions may be drawn:

(a) The computed potential profiles of the cell are in agreement with
measurements.

(b) Output current and power can be computed as a function of the
length of the active area of the illuminated cell.

(c) The output power density can be computed as a function of the
area of the active length and width of contact strip.

The above analysis can be used to optimize the grid structure in a cell
by making the three sets of measurements and programming the solutions on
a digital computer.
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FIGURE 2.
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Model Configurations
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